60 research outputs found

    Glucose-6-phosphate dehydrogenase and transketolase modulate breast cancer cell metabolic reprogramming and correlate with poor patient outcome

    Get PDF
    The pentose phosphate pathway is a fundamental metabolic pathway that provides cells with ribose and NADPH required for anabolic reactions - synthesis of nucleotides and fatty acids - and maintenance of intracellular redox homeostasis. It plays a key role in tumor metabolic reprogramming and has been reported to be deregulated in different types of tumors. Herein, we silenced the most important enzymes of this pathway - glucose-6-phosphate dehydrogenase (G6PD) and transketolase (TKT) - in the human breast cancer cell line MCF7. We demonstrated that inhibition of G6PD, the oxidative branch-controlling enzyme, reduced proliferation, cell survival and increased oxidative stress. At the metabolic level, silencing of both enzymes reduced ribose synthesis. G6PD silencing in particular, augmented the glycolytic flux, reduced lipid synthesis and increased glutamine uptake, whereas silencing of TKT reduced the glycolytic flux. Importantly, we showed using breast cancer patient datasets that expression of both enzymes is positively correlated and that high expression levels of G6PD and TKT are associated with decreased overall and relapse-free survival. Altogether, our results suggest that this metabolic pathway could be subjected to therapeutic intervention to treat breast tumors and warrant further investigation

    Oxidative pentose phosphate pathway enzyme 6-phosphogluconate dehydrogenase plays a key role in breast cancer metabolism

    Get PDF
    The pentose phosphate pathway (PPP) plays an essential role in the metabolism of breast cancer cells for the management of oxidative stress and the synthesis of nucleotides. 6-phosphogluconate dehydrogenase (6PGD) is one of the key enzymes of the oxidative branch of PPP and is involved in nucleotide biosynthesis and redox maintenance status. Here, we aimed to analyze the functional importance of 6PGD in a breast cancer cell model. Inhibition of 6PGD in MCF7 reduced cell proliferation and showed a significant decrease in glucose consumption and an increase in glutamine consumption, resulting in an important alteration in the metabolism of these cells. No difference in reactive oxygen species (ROS) production levels was observed after 6PGD inhibition, indicating that 6PGD, in contrast to glucose 6-phosphate dehydrogenase, is not involved in redox balance. We found that 6PGD inhibition also altered the stem cell characteristics and mammosphere formation capabilities of MCF7 cells, opening new avenues to prevent cancer recurrance after surgery or chemotherapy. Moreover, inhibition of 6PGD via chemical inhibitor S3 resulted in an induction of senescence, which, together with the cell cycle arrest and apoptosis induction, might be orchestrated by p53 activation. Therefore, we postulate 6PGD as a novel therapeutic target to treat breast cancer

    Glyceraldehyde-3-phosphate dehydrogenase is overexpressed in colorectal cancer onset

    Get PDF
    Background Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an essential regulator of glycolysis used as a housekeeping marker for gene/protein normalisation. Given the pivotal role of GAPDH in tumour metabolism, our aim was to correlate its protein expression with tumour staging and prognosis of colorectal cancer. Methods GAPDH expression was immunohistochemically analysed in tumour tissues from 62 colorectal cancer (CRC) patients, and validated at mRNA level in an independent dataset comprising 98 paired stage II CRC and normal samples. Staining quantification was performed by computational image analysis, and correlations between GAPDH expression and tumour progression stage were assessed. Gene expression profiling was performed using Affymetrix microarrays. Probability of patient survival and disease-free survival were analysed by the univariate product-limit method of Kaplan-Meier. Groups were compared using Kruskal-Wallis tests. Results Overexpression of GAPDH is positively associated with early stage tumours without regional lymph node and distant metastases involved. These results were reinforced by those obtained at mRNA level. Conclusion Studying the role of GAPDH in malignant transformation can shed new light on the understanding of tumour onset and lead to the design of more efficient personalised therapies

    The landscape of tiered regulation of breast cancer cell metabolism

    Get PDF
    Altered metabolism is a hallmark of cancer, but little is still known about its regulation. In this study, we measure transcriptomic, proteomic, phospho-proteomic and fluxomics data in a breast cancer cell-line (MCF7) across three different growth conditions. Integrating these multiomics data within a genome scale human metabolic model in combination with machine learning, we systematically chart the different layers of metabolic regulation in breast cancer cells, predicting which enzymes and pathways are regulated at which level. We distinguish between two types of reactions, directly and indirectly regulated. Directly-regulated reactions include those whose flux is regulated by transcriptomic alterations (~890) or via proteomic or phospho-proteomics alterations (~140) in the enzymes catalyzing them. We term the reactions that currently lack evidence for direct regulation as (putative) indirectly regulated (~930). Many metabolic pathways are predicted to be regulated at different levels, and those may change at different media conditions. Remarkably, we find that the flux of predicted indirectly regulated reactions is strongly coupled to the flux of the predicted directly regulated ones, uncovering a tiered hierarchical organization of breast cancer cell metabolism. Furthermore, the predicted indirectly regulated reactions are predominantly reversible. Taken together, this architecture may facilitate rapid and efficient metabolic reprogramming in response to the varying environmental conditions incurred by the tumor cells. The approach presented lays a conceptual and computational basis for mapping metabolic regulation in additional cancers

    Problem-solving breast MRI: useful or a source of new problems?

    Get PDF
    PURPOSE:We aimed to evaluate the findings and results from breast magnetic resonance imaging (MRI) examinations performed for problem-solving purposes due to inconclusive conventional imaging findings.METHODS:Imaging findings, biopsy and follow-up results were retrospectively evaluated for breast MRI performed for problem-solving purposes at our department between January 2011 and December 2016 for cases whose mammography, tomosynthesis, or ultrasonography findings were inconclusive. RESULTS:Lesions were identified in 414 of 986 problem-solving MRI examinations, and 13.3% of these lesions were diagnosed as malignant. A total of 124 lesions were additionally found by MRI, and 9.7% of these lesions were diagnosed as malignant. MRI produced false-negative results in four cases. In cases whose conventional imaging methods yielded indefinite results, the sensitivity, specificity, negative and positive predictive values of MRI were found to be 96.3%, 83%, 99.3%, and 46.5%, respectively. For the additional lesions identified, the sensitivity, specificity, negative and positive predictive values of MRI were found to be 91.7%, 69%, 98.7%, and 24%, respectively.CONCLUSION:Breast MRI is a reliable problem-solving method for excluding malignancy that cannot be confirmed by conventional imaging. In such cases, additional findings from MRI may help identify new cancers that cannot be detected with conventional methods. However, it has moderately low specificity which may cause unnecessary biopsies, follow-ups, and anxiety to patients

    MIDcor, an R-program for deciphering mass interferences in mass spectra of metabolites enriched in stable isotopes

    Get PDF
    Background: Tracing stable isotopes, such as 13 C using various mass spectrometry (MS) methods provides a valuable information necessary for the study of biochemical processes in cells. However, extracting such information requires special care, such as a correction for naturally occurring isotopes, or overlapping mass spectra of various components of the cell culture medium. Developing a method for a correction of overlapping peaks is the primary objective of this study. Results: Our computer program-MIDcor (free at https://github.com/seliv55/mid_correct) written in the R programming language, corrects the raw MS spectra both for the naturally occurring isotopes and for the overlapping of peaks corresponding to various substances. To this end, the mass spectra of unlabeled metabolites measured in two media are necessary: in a minimal medium containing only derivatized metabolites and chemicals for derivatization, and in a complete cell incubated medium. The MIDcor program calculates the difference (D)between the theoretical and experimentally measured spectra of metabolites containing only the naturally occurring isotopes. The result of comparison of D in the two media determines a way of deciphering the true spectra. (1) If D in the complete medium is greater than that in the minimal medium in at least one peak, then unchanged D is subtracted from the raw spectra of the labeled metabolite. (2) If D does not depend on the medium, then the spectrum probably overlaps with a derivatized fragment of the same metabolite, and D is modified proportionally to the metabolite labeling. The program automatically reaches a decision regarding the way of correction. For some metabolites/fragments in the case (2)D was found to decrease when the tested substance was 13 C labeled, and this isotopic effect also can be corrected automatically, if the user provides a measured spectrum of the substance in which the 13 C labeling is known a priori. Conclusion: Using the developed program improves the reliability of stable isotope tracer data analysis

    Synthesis, characterization and biological activity of new cyclometallated platinum(IV) iodido complexes

    Full text link
    The synthesis of six novel cyclometallated platinum(IV) iodido complexes is accomplished by intermolecular oxidative addition of methyl iodide (compounds 2a-2c) or iodine (compounds 3a-3c) upon cyclometallated platinum(II) compounds [PtX{(CH3)(2)N(CH2)(3)NCH(4-ClC6H3)}] (1a-1c: X = Cl, CH3 or I). The X-ray molecular structures of platinum(II) compound 1c and platinum(IV) compounds 3b and 3a' (an isomer of 3a) are reported. The cytotoxic activity against a panel of human adenocarcinoma cell lines (A-549 lung, MDA-MB-231 and MCF-7 breast, and HCT-116 colon), DNA interaction, topoisomerase I, II alpha, and cathepsin B inhibition, and cell cycle arrest, apoptosis and ROS generation of the investigated complexes are presented. Remarkable antiproliferative activity was observed for most of the synthesized cycloplatinated compounds (series 1-3) in all the selected carcinoma cell lines. The best inhibition was provided for the octahedral platinum(IV) compounds 2a-2c exhibiting a methyl and an iodido axial ligand. Preliminary biological results point to a different mechanism of action for the investigated compounds. Cyclometallated platinum(II) compounds 1a-1c modify the DNA migration as cisplatin. In contrast, cyclometallated platinum(IV) compounds 2a-2c and 3a-3c did not modify the DNA tertiary structure neither in the absence nor in the presence of ascorbic acid, which made them incapable of reducing platinum(IV) compounds 2b and 2c in a buffered aqueous medium (pH 7.40) according to H-1 NMR experiments. Remarkable topoisomerase II alpha inhibitory activity is reported for platinum(IV) complexes 2b and 3a and in addition, for the last one, a moderate cathepsin B inhibition is reported. Cell cycle arrest (decrease in G0/G1 and G2 phases and arrest in the S phase), induction of apoptosis and ROS generation are related to the antiproliferative activity of some representative octahedral cyclometallated platinum(IV) compounds (2b and 2c)

    Methylseleninic acid promotes antitumour effects via nuclear FOXO3a translocation through Akt inhibition

    Get PDF
    Selenium supplement has been shown in clinical trials to reduce the risk of different cancers including lung carcinoma. Previous studies reported that the antiproliferative and pro-apoptotic activities of methylseleninic acid (MSA) in cancer cells could be mediated by inhibition of the PI3K pathway. A better understanding of the downstream cellular targets of MSA will provide information on its mechanism of action and will help to optimize its use in combination therapies with PI3K inhibitors. For this study, the effects of MSA on viability, cell cycle, metabolism, apoptosis, protein and mRNA expression, and reactive oxygen species production were analysed in A549 cells. FOXO3a subcellular localization was examined in A549 cells and in stably transfected human osteosarcoma U2foxRELOC cells. Our results demonstrate that MSA induces FOXO3a nuclear translocation in A549 cells and in U2OS cells that stably express GFP-FOXO3a. Interestingly, sodium selenite, another selenium compound, did not induce any significant effects on FOXO3a translocation despite inducing apoptosis. Single strand break of DNA, disruption of tumour cell metabolic adaptations, decrease in ROS production, and cell cycle arrest in G1 accompanied by induction of apoptosis are late events occurring after 24h of MSA treatment in A549 cells. Our findings suggest that FOXO3a is a relevant mediator of the antiproliferative effects of MSA. This new evidence on the mechanistic action of MSA can open new avenues in exploiting its antitumour properties and in the optimal design of novel combination therapies. We present MSA as a promising chemotherapeutic agent with synergistic antiproliferative effects with cisplatin. (C) 2015 Elsevier Ltd. All rights reserved.Ministerio de Ciencia e Innovacion, Spain [SAF2011-25726]; Agencia de Gestio d'Ajuts Universitaris i de Recerca (AGAUR)-Generalitat de Catalunya [2014SGR1017]; Ministerio de Economia y Competitividad, Spain [SAF2014-56059-R]; Fundacao para a Ciencia e a Tecnologia (FCT) Research Center [UID/BIM/04773/2013CBMR 1334]; National Institute of Health, USA [1R01CA118434-01A2, 1P01CA163223-01A1]; National Science Foundation, USA [EPS-0447479]; FCT [SFRH/BPD/84634/2012]; prize ICREA Academia for excellence in research; ICREA Foundation-Generalitat de Cataluny

    EPIdemiology of Surgery-Associated Acute Kidney Injury (EPIS-AKI) : Study protocol for a multicentre, observational trial

    Get PDF
    More than 300 million surgical procedures are performed each year. Acute kidney injury (AKI) is a common complication after major surgery and is associated with adverse short-term and long-term outcomes. However, there is a large variation in the incidence of reported AKI rates. The establishment of an accurate epidemiology of surgery-associated AKI is important for healthcare policy, quality initiatives, clinical trials, as well as for improving guidelines. The objective of the Epidemiology of Surgery-associated Acute Kidney Injury (EPIS-AKI) trial is to prospectively evaluate the epidemiology of AKI after major surgery using the latest Kidney Disease: Improving Global Outcomes (KDIGO) consensus definition of AKI. EPIS-AKI is an international prospective, observational, multicentre cohort study including 10 000 patients undergoing major surgery who are subsequently admitted to the ICU or a similar high dependency unit. The primary endpoint is the incidence of AKI within 72 hours after surgery according to the KDIGO criteria. Secondary endpoints include use of renal replacement therapy (RRT), mortality during ICU and hospital stay, length of ICU and hospital stay and major adverse kidney events (combined endpoint consisting of persistent renal dysfunction, RRT and mortality) at day 90. Further, we will evaluate preoperative and intraoperative risk factors affecting the incidence of postoperative AKI. In an add-on analysis, we will assess urinary biomarkers for early detection of AKI. EPIS-AKI has been approved by the leading Ethics Committee of the Medical Council North Rhine-Westphalia, of the Westphalian Wilhelms-University Münster and the corresponding Ethics Committee at each participating site. Results will be disseminated widely and published in peer-reviewed journals, presented at conferences and used to design further AKI-related trials. Trial registration number NCT04165369
    corecore